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Introduction

This Mathematical Formaulae handbook has been prepared in response to a request from the Physics Consultative
Committee, with the hope that it will be useful to those studying physics. It is to some extent modelled on a similar
document issued by the Department of Engineering, but obviously reflects the particular interests of physicists.
There was discussion as to whether it should also include physical formulae such as Maxwell’s equations, etc., but
a decision was taken against this, partly on the grounds that the book would become unduly bulky, but mainly
because, in its present form, clean copies can be made available to candidates in exams.

There has been wide consultation among the staff about the contents of this document, but inevitably some users
will seek in vain for a formula they feel strongly should be included. Please send suggestions for amendments to
the Secretary of the Teaching Committee, and they will be considered for incorporation in the next edition. The
Secretary will also be grateful to be informed of any (equally inevitable) errors which are found.

This book was compiled by Dr John Shakeshaft and typeset originally by Fergus Gallagher, and currently by
Dr Dave Green, using the TgX typesetting package.

Version 1.5 December 2005.
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Physical Constants

Based on the “Review of Particle Properties”, Barnett et al., 1996, Physics Review D, 54, p1, and “The Fundamental
Physical Constants”, Cohen & Taylor, 1997, Physics Today, BG7. (The figures in parentheses give the 1-standard-
deviation uncertainties in the last digits.)

speed of light in a vacuum c 2.997 924 58 x 103 m s~ 1 (by definition)
permeability of a vacuum o 4t x 107" Hm™! (by definition)
permittivity of a vacuum € 1/ppc® = 8-854187817... x 10 12 Fm™!
elementary charge e 1-602 177 33(49) x 1071 C

Planck constant h 6-626 075 5(40) x 10734 s

h/2m i 1-054 572 66(63) x 10734 s

Avogadro constant N 6-022 136 7(36) x 1023 mol ™!

unified atomic mass constant m, 1-660 540 2(10) x 10~%” kg

mass of electron m, 9-109 389 7(54) x 10731 kg

mass of proton m, 1-672 623 1(10) x 10~%” kg

Bohr magneton el /47, g 9-2740154(31) x 1072471

molar gas constant R 8-314 510(70) J K~ mol ™!

Boltzmann constant ks 1-380 658(12) x 10723 J K1
Stefan—-Boltzmann constant o 5670 51(19) x 108 Wm—2 K*
gravitational constant G 6-672 59(85) x 10~ 11 N m? kg2

Other data

acceleration of free fall g 9.806 65 m s~ 2 (standard value at sea level)




1. Series

Arithmetic and Geometric progressions

AP, Sn:a+(a+d)+(a+2d)+~~~+[a+(n—1)d}:g[Za—i—(n—l)d]

1 — 0
GP 5,1:a—|—ar—|—ar2—|—~~~—|—ar”’1:a1_:, <Soo:$ f0r|”<1)

(These results also hold for complex series.)
Convergence of series: the ratio test

Uni1
Up

Sp=u1+u;+uzs+---+u, convergesas n — oo if lim <1

n—oo

Convergence of series: the comparison test
If each term in a series of positive terms is less than the corresponding term in a series known to be convergent,

then the given series is also convergent.

Binomial expansion

(1+x)"=1+nx+ n<n2'_ 1)x2+ n(n—l?))'(n—z)x3+___

If n is a positive integer the series terminates and is valid for all x: the term in x” is "C,x" or (r) where "C, =

m is the number of different ways in which an unordered sample of r objects can be selected from a set of
n objects without replacement. When 7 is not a positive integer, the series does not terminate: the infinite series is
convergent for |x| < 1.

Taylor and Maclaurin Series

If y(x) is well-behaved in the vicinity of x = a then it has a Taylor series,
B B dy wu?d?y uld’y
y(x) =y(a+u) —3/(”)+“a+§@+§@+"'
where u = x — a and the differential coefficients are evaluated at x = a. A Maclaurin series is a Taylor series with
a=20,
B dy x*d?y x*d3
@) =y O g T e T T

Power series with real variables

x? x"
e’ :1—|—x+5—|—~~~—|—m+~~~ valid for all x
x2 .x3 . x"
1n(1+x):x—?+§+---+(—1)”+17+~~ valid for -1 <x <1
ix —ix 2 4 6
CcOS X :%:1—%+%—%+~~ valid for all values of x
ix _ L—ix 3 5
sin x :%:x—%+%+~~ valid for all values of x
1 2
tan x :x+§x3—|—ﬁx5+~~ Validfor—g<x<g
¥oox°
tan~ 1 x zx—?+€—--- valid for -1 <x <1
1x>  13%°
1 71 B _ _— PR 1 —
sin” " x —x+23—|—2.45+ valid for -1 <x <1




Integer series

N(N+1)

N
S =1+4243++N=——

N(N+1)2N+1
n2=124224324 ... L N2 = (N+1)(2N +1)

T
N
) ;
N N?(N +1)?
2n3:l3+23+33+---+N3:[1+2+3+---N]2:%
(_1);1+1 B 1 1 1 B .
= 1 5 + 371 +...=1In2 [see expansion of In(1 + x)]
(=™t 1 1 1 oo . 1
T =1 3+5 7-1- =1 [see expansion of tan™ " x]

N(N +1)(N +2)(N +3)

n(n+1)(n+2)=123+234+ -+ N(N+1)(N+2) = 7

This last result is a special case of the more general formula,

NN+ 1D(N+2)...(N+7r)(N+r+1)
r+2 '

N
Zn(n—i—l)(n—l—Z)...(n—i—r):

Plane wave expansion

exp(ikz) = exp(ikrcos6) = ’Z (21 + 1)i'j;(kr) Py(cos 8),
=0

where P;(cos 0) are Legendre polynomials (see section 11) and j;(kr) are spherical Bessel functions, defined by

= / ], +1,(p),  with Ji(x) the Bessel function of order I (see section 11).

2. Vector Algebra

If i, j, k are orthonormal vectors and A = A,i + A,j + A.k then \A\Z = A2+ A; + A2. [Orthonormal vectors =
orthogonal unit vectors.]

Scalar product

A-B=|A||B|cosb where 6 is the angle between the vectors

By
B?/
B.

Scalar multiplication is commutative: A- B = B - A.

= ABy+ AyB, + A.B, = [A A A:]

Equation of a line

A point ¥ = (x, y, z) lies on a line passing through a point a and parallel to vector b if

r=a-+ Ab

with A a real number.




Equation of a plane
A point r = (x, y,z) is on a plane if either
(@r- d= |d|, where d is the normal from the origin to the plane, or

(b) % + % + % = 1 where X, Y, Z are the intercepts on the axes.

Vector product

A xB = n|A||B|sin 6, where 0 is the angle between the vectors and # is a unit vector normal to the plane containing
A and B in the direction for which A, B, n form a right-handed set of axes.

A x B in determinant form A x B in matrix form
i g 0 —A, A B,
Ay A, A A, 0 —A:| |By
B, B, B, —-A, Ay 0 B.
Vector multiplication is not commutative: A X B = —B x A.
Scalar triple product
A, Ay A,
AxB-C=A-BxC=|By By B;|=—AxC-B, etc
G C G

Vector triple product

Ax(BxC)=(A-C)B—(A-B)C, (AxB)xC=(A-C)B—(B-C)A

Non-orthogonal basis

A = Ajer + Azer + Aszes
ey X e3

Ai=¢€-A where ¢ = ——2 _
eq - (ez X 63)

Similarly for A; and As.

Summation convention

a = a;e; implies summation overi =1...3
a-b = ﬂ,‘b,‘
(a x b); = &jajby where e123 = 1; & = —¢&ij

Eijkekim = GitOjm — im0




3. Matrix Algebra

Unit matrices

The unit matrix I of order # is a square matrix with all diagonal elements equal to one and all off-diagonal elements
zero,ie., (I);; = &;;. If A is a square matrix of order 1, then AI = IA = A. Also I = I
I is sometimes written as I, if the order needs to be stated explicitly.

Products
If Aisa (n x I) matrix and B is a (I x m) then the product AB is defined by
!
(AB)ij =% AuBy;
K=
In general AB # BA.

Transpose matrices

If A is a matrix, then transpose matrix A” is such that (A");; = (A);i.

Inverse matrices

If A is a square matrix with non-zero determinant, then its inverse A~! is such that AA™! = A™'A = I.

transpose of cofactor of A;;
|A]

(A1) =
where the cofactor of A;; is (—1)""/ times the determinant of the matrix A with the j-th row and i-th column deleted.

Determinants
If A is a square matrix then the determinant of A, |A| (= det A) is defined by
|A| = Z €ijk.. A1iA2jAsk - - -
i S

where the number of the suffixes is equal to the order of the matrix.

2x 2 matrices

IfA= ({1 b) then,
c d

. . T a c ,1_L d —b
|A| = ad — bc A_<b d) A _|A|<—c 11)

Product rules
(AB...N)T = NT...BTAT
(AB...N)"'=N"1...B1A™! (if individual inverses exist)
|AB...N| = |A]||B|...|N| (if individual matrices are square)

Orthogonal matrices

An orthogonal matrix Q is a square matrix whose columns ¢; form a set of orthonormal vectors. For any orthogonal
matrix Q,

Q'=Q", |Q=+1, QTisalso orthogonal.




Solving sets of linear simultaneous equations

If A is square then Ax = b has a unique solution x = Abif A1 exists, i.e., if |A| # 0.
If A is square then Ax = 0 has a non-trivial solution if and only if |A| = 0.

An over-constrained set of equations Ax = b is one in which A has m rows and #n columns, where m (the number
of equations) is greater than n (the number of variables). The best solution x (in the sense that it minimizes the

error |Ax — b)) is the solution of the n equations AT Ax = A”b. If the columns of A are orthonormal vectors then
x=A"b.

Hermitian matrices

The Hermitian conjugate of A is At = (A*)T, where A* is a matrix each of whose components is the complex

conjugate of the corresponding components of A. If A = AT then A is called a Hermitian matrix.

Eigenvalues and eigenvectors

The n eigenvalues A; and eigenvectors u; of an n x n matrix A are the solutions of the equation Au = Au. The
eigenvalues are the zeros of the polynomial of degree n, P,(A) = |A — Al|. If A is Hermitian then the eigenvalues
A; are real and the eigenvectors u; are mutually orthogonal. |[A — AI| = 0 is called the characteristic equation of the
matrix A.

TrA=7% A, also|A|=[]A
7 i
If S is a symmetric matrix, A is the diagonal matrix whose diagonal elements are the eigenvalues of S, and U is the
matrix whose columns are the normalized eigenvectors of A, then
u'su=A and S=UAU".

If x is an approximation to an eigenvector of A then x” Ax/(x"x) (Rayleigh’s quotient) is an approximation to the
corresponding eigenvalue.

Commutators
[A, B] = AB—BA
[A,B]  =—[B,A]
A8 =[BT, Al
[A+B,C] = [A,C]+[B,C]
[AB,C] = A[B,C]+[A,C]B
[A,[B,C]] + [B,[C, Al + [C, [A, B]] = 0

Hermitian algebra

bl = (b2,03, ..

)

Matrix form

Operator form

Bra-ket form

Hermiticity b -A-c=(A-b)-c /w*o¢ - /(ow)*¢ ($|0] )
Eigenvalues, A real Au; = Agui OY; = A Oli) = A; |i)
Orthogonality ui-uj=0 /d);‘l,b]- =0 (ilj)=0 (i #7)
Completeness b="> ui(ui-b) ¢=> i (/ IP?CP) ¢ =3 i) (il¢)
Rayleigh—Ritz
LA YOy
Lowest eigenvalue Ao < % / %

- [




Pauli spin matrices

0 1 0 —i 1 0
Sl L) C A ) B A

0,0y = 103, 0,0, = i0y, 0,0, = i0y, 0,0y = 0,0y = 0,0, = I
y Yy y yOy

4. Vector Calculus

Notation

¢ is a scalar function of a set of position coordinates. In Cartesian coordinates z
¢ = ¢(x,y,2); in cylindrical polar coordinates ¢ = ¢(p, ¢, z); in spherical

polar coordinates ¢ = ¢(r,6, ¢); in cases with radial symmetry ¢ = ¢(r). ~
A is a vector function whose components are scalar functions of the position
coordinates: in Cartesian coordinates A = iA, + jA, + kA;, where A, A, A,
are independent functions of x, y, z.

o T
0x
: . iian .0 .0 a | o 0
In Cartesian coordinates V (‘del’) =i P + 7 6y+kaz = |3y
9 b
L 0z | 2N

grad ¢ = V¢, divA=V-A, curl A=V x A

Identities
grad(¢1 + ¢2) = grad ¢1 + grad ¢ div(A; + Ay) = divA; +divA;
grad(¢1¢2) = 1 grad ¢ + ¢2 grad ¢
curl(A,; + A,) = curl Ay + curl A,
div(¢A) = ¢pdivA + (grad @) - A, curl(¢pA) = pcurl A+ (grad¢p) x A
div(A; X Ay) = Ay - curl A1 — A; - curl A,
curl(A; X Ap) = A1 divA; — Ay div A; + (A; - grad)A, — (A - grad) A,
div(curl A) =0, curl(grad ¢) =0
curl(curl A) = grad(div A) — div(grad A) = grad(div A) — V?A

grad(A; - Ay) = Ay x (curl Ap) + (A - grad)A, + Ay x (curl Aq) + (A, - grad) A




Grad, Div, Curl and the Laplacian

Cartesian Coordinates Cylindrical Coordinates Spherical Coordinates
Conversion to _ . e .
Cartesian x=pcosp y=psing z=2 x—rcosqosm_H y=rsingpsind
. z =rcosf
Coordinates
Vector A A+ Ayj+ Ak AP+ AP+ AZ AF+ Agb + Ay
. op ., 0¢ 0 Od)A 10¢ . a¢>A 6(1) 10¢~ 1 0¢ ..
dient — — -— - —
Gradient Vg | Grit 5,7+ 5k P T 0% 3" o 70 T rsn00e?
19(r*A,) 1 0Agsin®
Divergence 0A, | 0A, 04, 10(pAp) | 104,  0A; 2 or rsinf 00
V-A ox oy 0z p 0p p 0p 0z 1 944,
rsin@ 0@
. 1. o 1. ~ ~
i j k -p @ -z 5 1 — lrp
3 9 9 Y Y r*sin@ rsiné r
Curl V x A — — — 0 o 0 0 0 0
Ox 0y 0z — — = — — —
A A A op Op 0z or a0 dp
x Ay Az A, pA, A, A, rAg rAysin®
10 aqb 1 a9 /. 0¢
. - = — | + 5——= [ sinf0—
Laplacian 2P % N ) < Od)> N 10%p 0*¢p | r*or or r*sin @ 00 00
V2¢> d 2 ayz 2 0 pap pZ a(p,Z aZZ 1 azd)
* sin? 0 d¢?

Transformation of integrals

L = the distance along some curve ‘C’ in space and is measured from some fixed point.

S = a surface area

T = a volume contained by a specified surface

-~

t = the unit tangent to C at the point P

n = the unit outward pointing normal

A = some vector function
dL =

the vector element of curve (=  dL)

d S = the vector element of surface (= n dS)

Then /A-?dL:/A-dL
C C
and when A = V¢

[(V#)-daL= [ de

Gauss'’s Theorem (Divergence Theorem)

When S defines a closed region having a volume T

/T(V'A)dTI/S(Aﬁ)dS:/SA.

also

/T(qu)d’r:/sd)ds

ds

/T(VXA)dT:

/S(ﬁxA)dS




Stokes’s Theorem

When C is closed and bounds the open surface S,

/S(VXA)~dS:/CA~dL

also

/s(ﬁxv¢)d5:/c¢dL

Green'’s Theorem

/¢v¢-ds:/v-(¢v¢) dr
S T
— [0+ (V) - (V9)] dr

Green’s Second Theorem

[ 20— 492) dr = [ [0(T) - 6(Ty)]-ds

5. Complex Variables

Complex numbers

The complex number z = x + iy = r(cos 6 + isin8) = re'®*2" where i> = —1 and 7 is an arbitrary integer. The
real quantity r is the modulus of z and the angle 0 is the argument of z. The complex conjugate of zis z* = x —iy =
i0

r(cos® —isin®) =re % zz" = |z|* = x® 4

De Moivre’s theorem

(cos@ +isin@)" = e = cosnd + isinnd

Power series for complex variables.

2 n
e’ =14zt b g convergent for all finite z
2! n!
3 5
, z2  z -
sinz =z-3 + 5 convergent for all finite z
2 -
cosz =1- o1 + TR convergent for all finite z
P
In1+z)=z- St principal value of In(1 + z)
This last series converges both on and within the circle |z| = 1 except at the point z = —1.
tan~!z —Z—Z—3+Z—5—~~~
B 3 5

This last series converges both on and within the circle |z| = 1 except at the points z = =i.
(n=1) , nn-1)1n-2) 4

T + 30 z" +
This last series converges both on and within the circle |z| = 1 except at the point z = —1.

(1+2)" =1+nz+"




6. Trigonometric Formulae

cos’? A +sin® A =1 sec?A —tan’?A =1 cosec? A —cot? A =1
2tan A
sin2A =2sin Acos A cos2A = cos* A —sin® A tan2A = Lz.
1—tan“ A

cos(A + B) + cos(A — B)

sin(A £ B) = sin Acos B £ cos Asin B cos AcosB = 5
A—B)— A+ B
cos(A £ B) = cos Acos B F sin Asin B sinAsinB:COS( )ZCOS( +B)
+ i : _
tan(A £ B) = fanAxtanB sin A cosB — sin(A 4 B) + sin(A — B)
1FtanAtanB 2
sinA +sinB = ZSinA+BcosA_B cosZA:M
2 2 2
A+ B A—B 1-— 2A
sinA —sinB = 2cos + sin sin? A = L—cosaA
2 2 2
cos A + cosB = 2cosA+BcosA_B cos3A:3COSA+COS3A
2 2 4
cosA—cosBz—ZsinA+BsinA_B sin3A:M

2 2 4

Relations between sides and angles of any plane triangle

In a plane triangle with angles A, B, and C and sides opposite 4, b, and c respectively,

a b c

- = — = — = diameter of circumscribed circle.
sin A sin B sin C

a® = b* +c® —2bccos A
a=">bcosC+ ccosB
R
2bc
A—B a-—b C
2 a2

COSA =

tan

(a+b+c)

1. 1, . 1 1
area = EabsmC = EbcsmA = EcasmB = \/s(s —a)(s—Db)(s—c¢), where s = 5

Relations between sides and angles of any spherical triangle

In a spherical triangle with angles A, B, and C and sides opposite a, b, and ¢ respectively,

sina sinb sinc

sin A sin B sinC

cosa = cosbcosc + sinbsinccos A

cos A = —cosBcosC + sin Bsin C cosa

10



7. Hyperbolic Functions

1, ey x2 Xt
coshx—i(e +e )—1+E+E+---
. 1, ey XX
smhx—i(e—e )—x+§+a+"'
coshix = cosx cosix = cosh x
sinhix = isinx sinix = isinh x
inh 1
tanhx = Sh X sechx =
cosh x cosh x
h 1
cothx = C9S il cosechx = —
sinh x sinh x

cosh?x —sinh?x =1

For large positive x:
ex
coshx ~ sinhx — >
tanhx — 1

For large negative x:

—X

. e
coshx ~ —sinhx —

2
tanhx — —1
Relations of the functions
sinhx = —sinh(—x) sechx = sech(—x)
coshx = cosh(—x) cosechx = — cosech(—x)
tanhx = —tanh(—x) cothx = —coth(—x)
2 tanh (x/2) tanh x 1+ tanh?® (x/2) 1

sinhx = = coshx = =

2 2
1 — tanh” (x/2) /1 — tanh? x 1 — tanh” (x/2) /1 — tanh? x
tanhx =14/1-— sech? x sechx =14/1-— tanh? x
cothx =14/ cosech?x + 1 cosechx = 4/ coth?x —1

sinh(x/2) =4/ 7cosh2x -1 cosh(x/2) =4/ 7cosh2x +1

coshx —1 sinh x
tanh(x/2) = =
anh(x/2) sinh x coshx +1
sinh(2x) = 2sinh x cosh x tanh(2x) = Tcainhag
1+ tanh” x
cosh(2x) = cosh? x 4 sinh? x = 2 cosh’x — 1 = 1 4 2sinh?x
sinh(3x) = 3sinh x + 4 sinh® x cosh3x = 4 cosh® x — 3 coshx

_ 3tanhx + tanh® x
1+ 3tanh®x

tanh(3x)

valid for all x

valid for all x

11



sinh(x &+ y) = sinh x cosh y £ cosh x sinh y

cosh(x £+ y) = coshx cosh y + sinh xsinh y
tanh x & tanh y

tanh(x +y) = 1+ tanh x tanh y

sinhx + sinh y = 2 sinh %(x + y) cosh %(x - ) coshx + coshy = 2 cosh %(x +y) cosh%(x - v)

sinh x — sinh y = 2 cosh %(x + y) sinh %(x - ) coshx — coshy = 2sinh %(x +y) sinh%(x - v)

1+ tanh (x/2) iy

sinh x & cosh x 1T tanh(x/2) e
tanhx £+ tanhy = sinh(x+y)
coshx cosh y
sinh(x + y)

cothx £ cothy = £ sinh xsinh

Inverse functions

for —oco < x < 0

a2 2
cosh_lx 1 <x+ ;c a) forx >a
1
tanh ™! —Eln<Z+i> for x> < 4>
coth™' = %ln(ii—Z) for x* > 4>
2
sech_lgzln<%+ a_2_1> forO<x<a
x
2
cosech_lgzln<%+ a_2+1) forx #0
x

8. Limits

n‘x" — 0asn — oo if |x| < 1 (any fixed c)
x"/n! — 0asn — oo (any fixed x)

(1+x/n)" — e*asn — oo, xInx — 0asx — 0

= = en im&:f/(a) "Hopital’s rule
If f(a) =g(a) =0 th %Hag(x) () (I'Hopital’s rule)

12



9. Differentiation

P , u\’  uv—uv
(uv) =v'vo4+ud, (=) =—5—
v

(uv)(”) — u(n)v _|_ nu(n_l)v(l) + e _|_

|
where "C, = (:l) = ﬁ
a(sin X) =cosx a(sinh x) =coshx
%(cosx) = —sginx a(coshx) = sinh x
I (tanx) =sec®x % (tanhx) = sech®x
a(sec X) =secxtanx a(sech x) = —sechxtanhx
i (cotx) = —cosec?x i (cothx) = — cosech®x
% (cosecx) = — cosec x cotx ax (cosechx) = — cosech x coth x

Standard forms

— dx =lnx+c

1
/e‘”‘dx :Eea"—l—c

x2 1
/xlnxdx— > (lnx—i) +c

1 1
/ 5 5 dx = -tan! (E) +c
a”+x a a

ncru(”_r)v(y) + oo + uv(”)

10. Integration

/lnx dx =x(Inx—-1)+c¢

/xe”"dx: e™ (E—lz) +c
a a

1 1 1 a+x
/a2-x2dx Etanh ()—i—c 2—1 (a x>+c

1 1 1
d ——coth =
/xz—az X aco ( +c=

/ X dr — -1 1
(xz 4 aZ)n - 2(1’1 _ 1) (xz 4 aZ)n—l
X
/x2 + a2 dx
/* dx = sin™! (E) +c
Va2 — 52 a
/ 1
Va2 £a?
/# dx =
vVx24a?

= %ln(xzzlzaz) +c

x2+a%2+¢

/\/a2 —x2dx = % {x\/zﬂ —x2 4 a%sin”

dx:1n<x—|—\/x2ia2)+c

)] e

Leibniz Theorem

forn # —1

for x* < a*

for x* > 4>

forn #1

13



/0 1+x (1+ x)x?

/ cos(x?) dx —/ sin(x?) dx =+
0 0 2

=oV2m

dx = mcosec pm

exp(—x*/20?) dx

T~
8

—00

oo

0
/sinx dx = —cosx+c

/cosxdx =sinx +c

/tanx dx = —In(cosx)+c
/cosecx dx = In(cosecx — cotx) + ¢
/secx dx =In(secx +tanx) +c

/cotx dx =In(sinx)+c

sin(m —n)x

0 1x3x5x---(n
/ x" exp(—x?/207%) dx =

s

2

1)o" V2r

/sinhxdx = coshx +¢
/coshxdx =sinhx +c¢

/tanhx dx =In(coshx)+c

/cosechx dx = In [tanh(x/2)] + ¢

/sechx dx =2tan"!(e") +c

/cothx dx =In(sinhx)+c

sin(m 4 n)x

/ sinmxsinnx dx =

2(m —n) 2(m+n)
/cosmxcosnx dx = 2 m—n)x | sin(m+n)x +c
2(m —n) 2(m+n)
Standard substitutions
If the integrand is a function of: substitute:

(a —x?) or v/a? — x2
(x? —|—a \/x2+a2
(x* — a*) or V/x2 — a2

x =asinforx =acosf
x = atan6or x = asinh 6

x =asecBorx =acosho

forp <1

for n > 2 and even

forn > 1 and odd

if m? # n?

if m? # n?

If the integrand is a rational function of sin x or cos x or both, substitute ¢ = tan(x/2) and use the results:

2t 1—+#2
T COSX = 5
+t 14+t

sinx =

2 dt
1+

If the integrand is of the form: substitute:
/ dx x+q=u’

(ax +b)\/px+gq pra
ax+b= 1

/ dx
(ax+b)\/px®>+qx+r

14



Integration by parts

b b
/udv:uv —/vdu
a a

Differentiation of an integral

b

a

If f(x, &) is a function of x containing a parameter « and the limits of integration a and b are functions of « then
d b db da b(a) 9
= /M) flo@) dx = fbo) g0~ fla) g+ [ o f () dx.

Special case,

[ dy = ()

Dirac é-function’

5(t— 1) = zi | explic(t )] de

T J -0
If f(t) is an arbitrary function of f then /Oo S(t—1)f(t) dt = f(1).
5(t) = 0if t £ O,also/oo 5(f) dt = 1

Reduction formulae
Factorials

nl=nn—-1)(n—-2)...1, 0r=1.

Stirling’s formula for large n:  In(n!) ~ nlnn — n.

For any p > —1,/ xPe ™ dx = p/ xPle ™ dx = pl. (1) = /T, (1)l = Vi, etc.
0 0
F L [ a1 - vy d P
7 > — 7 - = T AN\
orany p,q /Ox( x)7 dx CEXES]

Trigonometrical

If m, n are integers,
n—1
m+n

m—1
m-+n

/2 /2 /2
/ sin™ @ cos" 0 dO = / sin"™ 20 cos" 0 do = / sin™ @ cos" 260 d6
0 0 0

and can therefore be reduced eventually to one of the following integrals

/2 1 /2 /2 /2 T
/ sinf cos6 do = =, / sinfdé =1, / cos0do =1, ="
0 2 0 0 0 2
Other
oo n—1 1 /= 1
IfI, = /0 x" exp(—ocxz) dx then I, = ( oy )I,,_z, Iy = E\/;’ I = o

15



11. Differential Equations

Diffusion (conduction) equation

E—KVI[)

Wave equation

1 0%y
Vi = 5 —
i ¢ ot
Legendre’s equation
d?y , .dy
j— 2 —_— _— =
(1—x )dxz 2xdx +1(I+1)y=0,
. . . 1 d’ ’ I .,
solutions of which are Legendre polynomials P;(x), where P;(x) = i\ ax (x* — 1), Rodrigues’ formula so

Py(x) = 1, Pr(x) = x, Pa(x) = %(3x2 ~ 1) ete.

Recursion relation

P[(X) =

—] =

(21 = 1)xPra(x) — (1 = 1)Pa(x)]
Orthogonality

1 2
Pi(x)Py(x) dx = —=—— 5,
/_1 () Py (x) dx = 57— 8

Bessel’s equation
d’y , dy
2— [
a2 T ¥ax

solutions of which are Bessel functions J,,(x) of order m.

X + (x* —m*)y =0,

Series form of Bessel functions of the first kind

= )/
Jm(x) =% TRl

k=0
The same general form holds for non-integer m > 0.

(integer m).

16



Laplace’s equation

Viu=0

If expressed in two-dimensional polar coordinates (see section 4), a solution is
u(p, ) = [Ap" + Bp "] [Cexp(ing) + D exp(—ing)]

where A, B, C, D are constants and n is a real integer.

If expressed in three-dimensional polar coordinates (see section 4) a solution is
u(r,0, ) = [Ar' + Br- "D P [Csinme + D cos me]

where | and m are integers with [ > |m| > 0; A, B, C, D are constants;

d [rm]
m} Py(cos )

is the associated Legendre polynomial.

P"(cos8) = sin"l @ [

PY(1) =1.
If expressed in cylindrical polar coordinates (see section 4), a solution is

u(p, ,z) = Jm(np) [Acos me + Bsinme] [Cexp(nz) + D exp(—nz)]

where m and n are integers; A, B, C, D are constants.

Spherical harmonics

The normalized solutions Y;"(6, ¢) of the equation

1 0 (. 0 1 7., _—

are called spherical harmonics, and have values given by

_ | )
Y1"(0,¢) = \/Zl 1 (li‘mbip{”(cow) el x {5—1)’” for m > 0

4t (14 |m|) form <0
/1 /3 /3 :
ie., Yg =\ o Y? =\ o cos 0, Ylil =F P sin 6 et1?, etc.

Orthogonality

YY R dQ = 8
47

12. Calculus of Variations

b
The condition for I = / F(y,y,x) dx to have a stationary value is oF = a4 a—F, , where v/’
a dy  dx \dy

Euler-Lagrange equation.

= ﬂ This is the
dx

17



13. Functions of Several Variables

Ifp=f(x,yz2...) then 0¢ implies differentiation with respect to x keeping v, z, . . . constant.

ox
_ 094y, 9y, 09 ~ 05 9, 09
dcp—axdx—i—aydy+azdz+ and 6¢~ax6x—|—ay6y+azéz—|—

. . 0 . . 0 0 .
where x,1,z,... are independent variables. — is also written as | — or —| when the variables kept
constant need to be stated explicitly.

2 2
If ¢ is a well-behaved function then o = 0" etc.
ox0dy  Oyox

If¢=flxy)

(), =y (60, (),(G0). =

axy(a—x>, 0x /y \0y )y \0® ) '
9/,
Taylor series for two variables
If ¢(x, y) is well-behaved in the vicinity of x = a, y = b then it has a Taylor series
- _ op 9 1 ( ,0%¢ ) 20°¢

o(x,y)=d(a+ub+0v)=¢(a,b) +tus +vay +5 (u 3 +2”Uaxay +v o +
where x = a + u, y = b + v and the differential coefficients are evaluatedatx =a, y=1»
Stationary points
A function ¢ = f(x, y) has a stationary point when 9% _ 9% _ 0. Unless 62_¢) = 62_¢) _ 0 _ 0, the followin,

- 'Y Yp ax_ay_ : axz_ayz_axay_ 4 g
conditions determine whether it is a minimum, a maximum or a saddle point.
g ?¢ *¢
Minimum: W >0, or 6—y2 >0, az(i) az(i) az(i) 2
2y o ooy \axay
Maximum: — <0, or —5 <0, y
ox oy
L P00 (P
Saddle point: e 6—y2 < (ax 6y)
Fp P ¢ : . . , .
ft—=—= = 0 the character of the turning point is determined by the next higher derivative.
x> dy* 0x0dy

Changing variables: the chain rule

If = f(x,y,...) and the variables x, y, . .. are functions of independent variables u, v, .. . then
0 _0gox  opdy
ou 0xOu Oy du
op _ o  agay
dv  0dxdv Ay dv
etc.

18



Changing variables in surface and volume integrals — Jacobians

If an area A in the x, y plane maps into an area A’ in the u, v plane then

o o
ou Odv
’ dx d :/ , dud h =
/Af(xy)xy A,f(uv)]uvwere] dy oy
ou 0v
The Jacobian | is also written as ggz' Zg The corresponding formula for volume integrals is
ou Ov Odw
/f(x,y,z) dx dydz:/ f(u,v,w)]dudvdw  wherenow |= 9 %y 9y
v v ou OJv Odw
%= 0 o
ou OJv Odw

14. Fourier Series and Transforms

Fourier series

If y(x) is a function defined in the range —7t < x < 7 then
M M

y(x)mco+ ) cmcosmx+ Y sysinmx
m= m=

1 1

where the coefficients are

1 us
co = ET/_ﬂy(x) dx

1 s
Cm = Elﬂy(x) cosmx dx
Sm = 711/ y(x) sinmx dx

with convergence to y(x) as M, M" — oo for all points where y(x) is continuous.

Fourier series for other ranges

Variable t, range 0 < t < T, (i.e., a periodic function of time with period T, frequency w = 27/T).

y(t) oo+ y cmcosmwt + %y sy sinmawt

where
w [T w (T w [T :
=5 ; y(t)dt, cy= ;/0 y(t) cosmwt dt, s, = ;/0 y(t) sinmewt dt.
Variable x, range 0 < x < L,
2mmx . 2mmx
y(x) ~co+ ) cmcos .t > swsin

where

2

L L L
co = l/ y(x)dx, cu= E/ y(x) cos Zmmx dx, s, = —/ y(x) sin 2mx
L Jo L Jo L LJo

dx.




Fourier series for odd and even functions

If y(x) is an odd (anti-symmetric) function [i.e., y(—x) = —y(x)] defined in the range —m < x < 7, then only
sines are required in the Fourier series and s,, = 72—t / y(x)sinmx dx. If, in addition, y(x) is symmetric about
0

/2
x = m/2, then the coefficients s,, are given by s,, = 0 (for m even), s,, = % /0 y(x) sinmx dx (for m odd). If

y(x) is an even (symmetric) function [i.e., y(—x) = y(x)] defined in the range —m < x < 7, then only constant

. L . . 1 (7 2 (7 .
and cosine terms are required in the Fourier series and ¢y = - / y(x) dx, cm = - / y(x) cosmx dx. If, in
0 0

7
addition, y(x) is anti-symmetric about x = > then ¢y = 0 and the coefficients c,, are given by ¢,, = 0 (for m even),

/2
Cm = % / y(x) cos mx dx (for m odd).
0

[These results also apply to Fourier series with more general ranges provided appropriate changes are made to the
limits of integration.]
Complex form of Fourier series

If y(x) is a function defined in the range —7t < x < 7 then

M . 1 om )
y(x) ~ Z Cne™, Cy= E‘[/ y(x)e ™ dx
ey

—Tt

with m taking all integer values in the range M. This approximation converges to y(x) as M — oo under the same
conditions as the real form.

For other ranges the formulae are:
Variable t, range 0 < t < T, frequency w = 2m/T,

y(t) = % Cpe™,  Cp = — /Ty(t) e Mt dt,
4 ’ 21 Jo

Variable x’, range 0 < x' < L,
1

x : ’ L B /
y(x’) — _zoocm el2mmnx /L, C, = Z/0 y<x/) e~ 12mmx /L dx’.
Discrete Fourier series

If y(x) is a function defined in the range —7t < x < 7 which is sampled in the 2N equally spaced points x, =
nx/N [n=—(N—-1)...N], then

y(xn) = co + €1 cos X, + c2c082x, + - - - + cn—1cos(N — 1)x, + cn cos Nx,

+ s1sinx, + spsin2x, + - - - + sy—18in(N — 1)x, + sy sin Nx,

where the coefficients are
o = o 3 vl)
cm:%Zy(xn)cosmxn (m=1,...,N—1)
CN = % Z y(x,) cos Nx,
sm:%Zy(xn)sinmxn (m=1,...,N—1)

1 .
SN = IN Z y(x,) sin Nx,,

each summation being over the 2N sampling points x;.
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Fourier transforms

If y(x) is a function defined in the range —oo < x < oo then the Fourier transform ¥(w) is defined by the equations

[o¢]

y(t) = % /oo /y\(w) elwt dw, /y\(w) = / y(t) e—iwt 4y

If w is replaced by 27t f, where f is the frequency, this relationship becomes
v = [ aneras, i) = [ ynean

If y(t) is symmetric about t = 0 then

y(t) = %/ Y(w)coswtdw,  Y(w)= 2/ y(t) cos wt dt.
0 0
If y(t) is anti-symmetric about t = 0 then
y(t) = % / J(w)sinwtdw,  Ylw)=2 / y(t) sin wt dt.
0 0
Specific cases
g y
a
t BN ya
-7 +T \_/ \/
y(t)=a, [t|<T . , ~ _, sinwt _ )
=0, |[t|>1 ("Top Hat"), y(w) =2a o - 2at sinc(wr)
where
Y y
-7 +T
yO=a@=l/m ST esavtaot), (@) = o (1~ coswr) = arsine? (
- Y ‘t| >T CUZT

y
t 4 .

§(w) = toy/mexp (w3 /4)

Y

y(t) = exp(—t*/t3) (Gaussian),

y(t) = f(t) " (modulated function), Y(w) = JA((w — wy)
y(t) = g 5(t —mt) (sampling function) Y(w) = § 5(w —27mn/T)

m=—0o0 n=—00

sinc(x) =

wT

2

)

sin(x)
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Convolution theorem

TF 2(t) = /°° ¥yt — 1) dr = /°° ¥(t—Dy(r)dr = x(t) * y(f) then  Z(w) = F(w) F(w).

— 00 — 00

Conversely, xy = X * .

Parseval’s theorem

/Oo yo(t) y(t) dt = % /Oo ¥ (w) Y(w) dw (if ¥ is normalised as on page 21)

Fourier transforms in two dimensions
V(k) = /V(r) e kT d%r

= / ” 27rV (r) Jo(kr) dr if azimuthally symmetric
0

. ] . ] Examples
Fourier transforms in three dimensions —
v —ikr 3 V(r) (k)
V(k) = /V(r)e &Pr : :
A . . . . drtr K2
=4 V(r) rsinkr dr  if spherically symmetric e 1
0 e
V(r) = 1 3 /‘7(’() eik-r d3k 47y kzj— Az
(2m) VV(r) ikV (k)
V2V(r) | —K*V (k)
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15. Laplace Transforms

If y(t) is a function defined for t > 0, the Laplace transform (s) is defined by the equation

7o) = Ly} = [ eyt at

Function y(t) (f > 0)

Transform ¥(s)

sin wt
cos wt
sinh wt

cosh wt
e "y(t)
y(t—7) 8(t — )
ty(t)

dy
dt
d"y
den

/Oty(fr) dt

/Otx('r) y(t—1)dr
/Otx(t — 1) y(71) dt

1 Delta function
1 . .
3 Unit step function

n!
S;1+1

& —a?)

Y(s+a)
T (s)

x(s) y(s) Convolution theorem

[Note that if y(t) = 0 for t < 0 then the Fourier transform of y(t) is y(w) = y(iw).]
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16. Numerical Analysis

Finding the zeros of equations

If the equation is y = f(x) and x, is an approximation to the root then either

_ f(xn)
fl(xn)
f(an)I - fr(l;n—l)f@n)

are, in general, better approximations.

Xn+1 = Xp

Or, Xp4+1 = Xn —

Numerical integration of differential equations
dy _
If Fre f(x,y) then
Yni1 = Yn + hf(x0, yn) whereh = x,41 — xp

Putting _1/,1+1 Yn + hf(-xn/ ]/n)

hlf Gen, yn) + f(Xnt1, Yii)]
2

then Yn+1 = Yn +

Central difference notation

If y(x) is tabulated at equal intervals of x, where /1 is the interval, then 8y,,,1/, = Yn11
62]/" = 6]/;1—4—1/2 - 6.1/;1—1/2

Approximating to derivatives

(ﬂ) L Yntl —Yn _ Yn — Yn-1 __ 6yn+1/z + 6.1/1171/2
~ A ~ ~

where h = x,11 — xy,

dx h 2h
@ yn+1 =2V + Yn-1 _ 62]/;1
dx2 h2 h2

Interpolation: Everett’s formula

1 1
y(x) = y(xo+9h)~9yo—|—9y1+ 9(9 -1)8 yo+ 9(9 1)8%y; + - - -

(Newton)

(Linear interpolation)

(Euler method)

(improved Euler method)

— Yn and

where 0 is the fraction of the interval h (= Xp41 — Xn) between the sampling points and 0 = 1 — 6. The first two

terms represent linear interpolation.

Numerical evaluation of definite integrals
Trapezoidal rule

The interval of integration is divided into # equal sub-intervals, each of width /; then
1
[ ar s @)+ fn) 4 f )+ 3£0)
whereh = (b —a)/nand x; = a + jh.

Simpson’s rule

The interval of integration is divided into an even number (say 2n) of equal sub-intervals, each of width h =

(b —a)/2n; then

/abf(x) dx ~ g [f(a) +4f(x1) +2f (x2) +4f(x3) + - - - +2f (x2n-2) +4f (x20-1) + f(b)]
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Gauss’s integration formulae

1 n
These have the general form / y(x) dx = Z ciy(x;)
-1 T

Forn=2: x;==0-5773; ¢; =1,1 (exact for any cubic).
Forn=3: x;=—-0.7746,0.0,0-7746; c¢; = 0-555,0-888, 0-555 (exact for any quintic).

17. Treatment of Random Errors

Sample mean X = %(xl + X0+ xp)
Residual: d=x—-%
Standard deviation of sample: s = L\/_ (d2 4+ d3+---d2)'/?
n
1

1%

Standard deviation of distribution: o (d3+d2+ - d2)1?

vn—1
Standard deviation of mean: Om = - ! (d3 4 d3 + - 'd,zl)l/ 2
v n(n—1)
12
__ 1 [zxg_ Ly w)
n(n—1)

Result of n measurements is quoted as ¥ & 0.

Range method

A quick but crude method of estimating o is to find the range r of a set of n readings, i.e., the difference between
the largest and smallest values, then

o —.

Vi

This is usually adequate for n less than about 12.

Combination of errors

If Z=Z(A,B,...) (with A, B, etc. independent) then

2 (0Z \? (0z \?
(Gz) = ﬂO‘A + EGB + -

So if
() Z=A+B=+C, (02)* = (04)* + (08)* + (0¢)?
.. B 0z\%2 _ (0a\? | (0B)\?
(iiy Z= ABor A/B, (7) - (7) n (F)
_am 9z _ 0A
(iii) Zz=A", 7 m 1
. o
(iv) Z=1InA, oz = XA
(V) Z=-expA, % =0y
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18. Statistics

Mean and Variance

A random variable X has a distribution over some subset x of the real numbers. When the distribution of X is
discrete, the probability that X = x; is P.. When the distribution is continuous, the probability that X lies in an

interval dx is f(x)&x, where f (x) is the probability density function.
Mean p = E(X ZPx,or/ (x) dx.

Variance 0% = V(X) = E[(X — p)? Z Pi(x /(x — )% f(x) dx

Probability distributions

Error function:  erf(x) = — / eV dy
Binomial: fx)= (x) p*q"*whereq = (1—p), u=np,o>=npqp<1l.
“x
Poisson: f(x) = ) e, and 0° =
1 (x — u)z}
Normal: X)=——e T
f(x) = ——=exp |-k

Weighted sums of random variables

If W = aX + bY then E(W) = aE(X) + bE(Y). If X and Y are independent then V(W) = a*V(X) + b*V(Y).

Statistics of a data sample xq, ..., x,

_ 1
Sample mean X = - > X

Sample variance s* = % > (xi = ¥)? = (l > xlz) — %2 = E(x?) — [E(x)]?

Regression (least squares fitting)

To fit a straight line by least squares to n pairs of points (x;, y;), model the observations by y; = a + (x

where the €; are independent samples of a random variable with zero mean and variance 0.

Sample statistics: s> Z ==-S(yi—79)> sf{y _1 Z(xi —%)(yi — 7).

n

~ = ~ 5 —\. ~ n . .
Estimators: @ =7, f = S—Zy; E(Yatx) =a+ B(x —X); 5% = p— (residual variance),
X

1 ~ 5 -
where residual variance = - Z{yi —a—Bx;—x))r =52 - =L

y 2
SJC
R &2 52
Estimates for the variances of @ and 3 are — and —.
n ns2
2
. .. ~ Sxy
Correlation coefficient: p = r = —.
xSy

i—X)+ e,
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